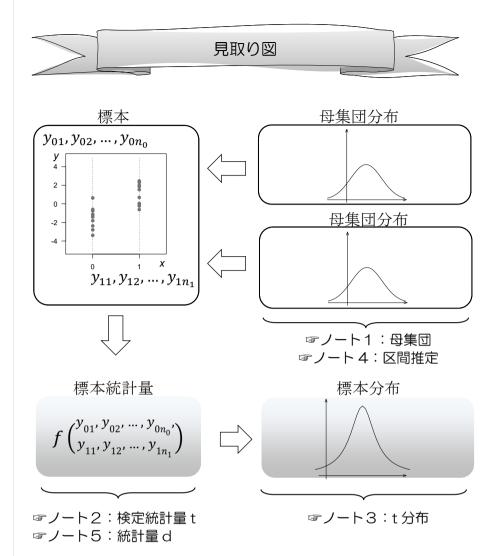
学習の目標

□ 二群の平均値の差の検定である「対応のない t 検定」のロ ジックがわかり、論文で出会った際に適切に解釈できる。 □ t検定を行う際に母集団に想定される仮定を理解できる。 □ 仮説検定における二つの仮説 (帰無仮説と対立仮説) が理 解でき、適切に想定できる。 □ 標本分布の標準偏差を標本誤差と呼び、標本平均値差が従 う標本分布の標準誤差を $\sigma_{\bar{\mathbf{v}}_1-\bar{\mathbf{v}}_0}$ と書くことが分かる。 □ t 値という統計量は、標本平均値差とその標本誤差の推定 量の比の値であることが分かる。 □ 帰無仮説の下で t 値が従う標本分布を † 分布と言い、自由 度が大きくなると標本正規分布に近づくことが分かる。 □ t検定では、データから得られたt値が、限界値を超えてt 分布の棄却域に入るかどうかを検定する。棄却域に入った 場合、帰無仮説という仮定が誤っていたと棄却する。 □ t値が棄却域に落ちる確率を有意水準αと呼び、帰無仮説が 真の時、誤って棄却する第一種の過誤を表すことが分かる。 □ 対立仮説が正しい時に t 値が従う分布を非心 t 分布と呼び、 これに基づいて対立仮説が正しいのに帰無仮説を保持して しまう誤りを β (第二種の過誤)と呼ぶことが分かる。 □ 信頼区間の作り方がわかり、95%信頼区間とは「標本から 計算された区間が母集団のパラメータ値を含む確率」が 95%であることを意味するということが分かる。 ロ サンプルサイズをあまりに大きくすると、細かい差まで際 限なく検出できるようになり、この結果実質的には小さな 差しかないのに有意になってしまうことが分かる。 □ 平均値の差が標準偏差が何個分なのかを表す統計量として コーエンのdという効果量があることが分かる。 □ 二種類の過誤と母集団効果量からサンプルサイズの決定に 利用できる。

本講から数回にわたり、t検定と呼ばれる統計手法を学びます。 これから学んでいく統計手法の中ではもっとも単純なモデルの 一つで、論文などでも目にすることの多い伝統的な統計手法です。 しかし「単純」なモデルではありますが、より発展的な手法の基 礎となるモデルでもあります。しっかりと身に付けてください。



データの形式

7 2 0 2 1 1 2 4		
ID	グループ(説明変数)	観測値(応答変数)
1	0	2.1
2	0	3.2
:	:	:
n_0	0	3.1
$n_0 + 1$	1	2.3
$n_0 + 2$	1	1.2
:	:	:
$n_0 + n_1$	1	1.5

(1)目的と考え方

- ① 目的(リサーチクエスチョン)二つのグループからの**小標本**に差があるか調べる。
- ② 考え方 各グループの標本の**平均**を計算し全体のばらつきを考 えた上でそれらの差がどのくらいぶれるかを判断する。

(2) 仮説検定

① 仮説の設定

H0:二つの母集団平均は完全に同じだ

H1:「二つの母集団平均は完全に同じだ」は偽だ

② 検定統計量の算出

「二つのグループの平均値の差:そのばらつき」という比を考え、その比の値を t とおく。

「二つのグループの平均値の差」

③ 有意水準の設定 H0のときtがどういう値を取るかを示した分布。

- ④ 仮説の採択
 - ③の基準に照らし①の値が大きいなら、H0を保持することを諦め、代わりに、対立仮説である H1 を採択する。
- (3) 区間推定

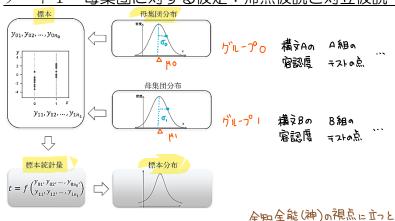
x%信頼区間という標本から作った区間は 100 回に x 回母集団のパラメータの値を含むようなように作られている。

(4) 効果量 (コーエンの d)

「二つのグループの平均値の差:全体のばらつき」という 比を考え、その比の値(d)から実質的な差を考える。

$$d = \frac{\text{二}つのグループの平均値の差}}{\text{全体のばらつきの推定値}}$$

□ ノート1 母集団に対する仮定:帰無仮説と対立仮説



(1) 母集団の実存

日集田分布の形が1つ明確に見える

頻度主義統計学では、<u>真の母集団分布の存在</u>を仮定する。 パラメータには、真の値があると仮定される。

(2) 頻度主義統計学の立場

人間は、真の母集団分布も、ましてや、パラメータの真の 値も知りえない。

そこで、仮説を立て、その仮説が現実に得られたデータと どのくらい整合性があるかで、仮説の是非を判断する。

(3)標本分布を同定するために必要な仮定 【標本の抽出の仕方に関する仮定】

① **独立性の仮定**: 各要素は<mark>互いに独立</mark>

independently

② 同一分布の仮定:

標本は<mark>同じ分布</mark>から抽出

identical

42

③ **無作為性の仮定**: 標本は<mark>ランダム</mark>に抽出

 $y_1, y_2, \cdots, y_n \stackrel{i.i.d}{\sim} N(\mu, \sigma^2)$

【母集団の姿に関する仮定】

① 正規性の仮定: 母集団の分布は正規分布

② 分散の等質性の仮定: 二つの母集団の分散は同じ

→ ③ 平均値の差に対する仮説:二つの母集団の<mark>平均</mark>は同じ

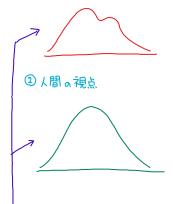
話の都合上「差はない」という仮定の下、推論を進めるかり、 む13.データとの整合性を踏まえると、棄却にて、退りでけたい仮説 ⇒帰無仮説と呼ぶ。

P)t検定。目標

母集国における 、一群の平均値差の 、 有無を検討すること

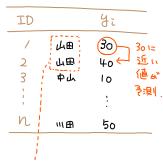
P 母集国 分布を仮定するということ

① 全知全能。視点



れたしたちは、何らかの分布を 母集国に想定せざるを得ず, 正規分布をはぴめとする分布を 仮定するのだが、そいが真の分布 と一致している保証はない。

P独立していないとき

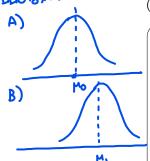


同じ人物が反復されて 観測されたことで、

ID=1のデータと ID=2のデータに相関が 生じてしまった

(= 独立ごはない!)

例 英語。 教授法



HO: μο = μι (2つの教授法に) (養がない (本がない) (2つの教授法に) (2つの教授法に) (素がある) (3つの教授法に) (4) 検証する仮説の設定

☞ 帰無仮説と対立仮説

① 帰無仮説 Null Hypothesis (H0) それを棄却する目的で設定される仮説のこと。 研究者のも<3+とに、まちゃっこんる(無)だろうと、

帰無仮説が、棄却された場合に採択する仮説のこと。

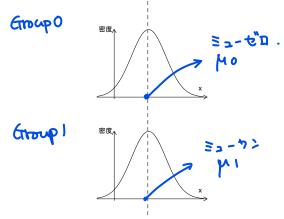
最終的に結論がHtm(局) 仮説のこと。 ② 対立仮説 Alternative Hypothesis (H1)

偏知伤部。 Ail in 标识 3, 处境味

今回のt検定では、それぞれ次のようになる。

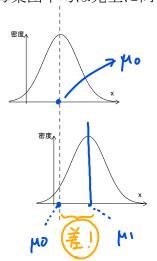
① 帰無仮説 Null Hypothesis (H0)

H0:二つの母集団平均は完全に同じだ



② 対立仮説 Alternative Hypothesis (H1)

H1:「二つの母集団平均は完全に同じだ」は偽だ



□ ノート2 標本分布:t分布

(1) 標準化 Standardization

① 例題

関東の予備校の英語の模試で 60 点を取った A 君と関西の予備校の英語の模試で 60 点を取った B 君はどちらが英語の成績が良いと言えるのだろうか?

② 偏差値

異なる標本間での点数の比較のために各データが「平均から標準偏差何個分」の位置にあるか計算したもの。

$$z_i = 50 + 10 \times \frac{y_i - \overline{g}}{s_y}$$

※ただし、もとのテストの点数と似たような値に収まるよう 10 をかけて 50 を足している。

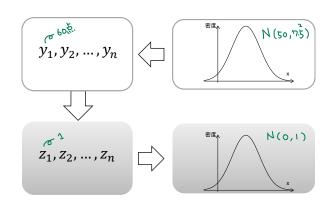
③ 標準化

異なる標本間での点数の比較のために各データが「平均から標準偏差何個分」の位置にあるか計算したもの。

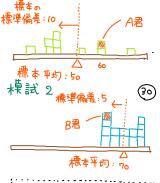
$$z_i = \frac{y_i - \bar{y}}{s_y}$$

④ 標準正規分布

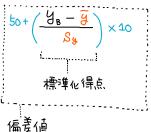
これは、平均が0、分散が1の正規分布N(0,1)。なお、変数 y_i が正規分布 $N(\mu,\sigma^2)$ に従うとき、標準化という操作で作られた新しい統計量 z_i は標準正規分布に従う。



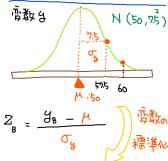
P <u>偏差值</u> 模試 1

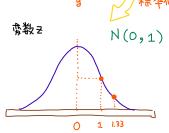


60)



P 正規 分布 と標準正規分布





(P) 中心極限定理のパーランアップ(2) t 分布 t-distribution

増えたことによる"

(第2講)

平均がHヹ、分散がるの 任意的母集团历布的马 り、りょう、、りのを取りだし、 その標本平均なる計算なと、 サンプルサイズ、れか、大きいとき

女~ N(M, が).

(今回の話)

平均以下了,分散的子の 正規分布以(Mis)の母集団から 4、42,…, yn E取りだし, その標本平均 みを計算切と, サンプルサイズのが大きくなくても す~ 内(M, 6点).

(P) 人間。限界

この兄の値をもとに、議論を すすめたいのだが、Mとでは 母集団に属するので人間にはれからない

① M 1= > い2 : 「母集国のMがOである」 という仮定(帰無仮説)の下で 話を進めることにする

② <u>(1=2112</u> : 得ら山た標本からすの値を 推定し,そめを 🔓 とおいて HY X する.

サンタルを取るたびに存いるけど 今回のざりをみまえると

(P)記法: ^ (ハート) σ· 真。值

よよよよりよりり

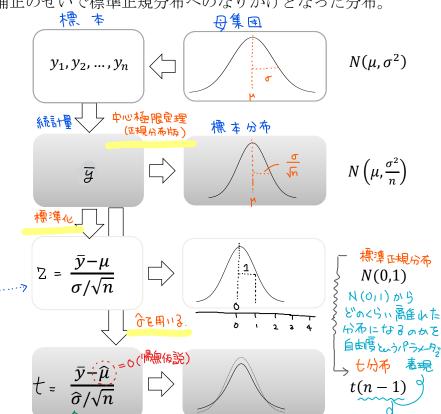
P Z値と七値の比較 帰無仮説下では、MI-Mo=Oはので

$$Z = \frac{y}{\sqrt{5}/\sqrt{5}}$$

油の視点では この母集国の値のは 包数

サープルでときにかいる統計 七值6は2つの統計量の比。

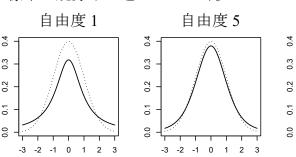
これは、統計量の算出の際 σ ではなく $\hat{\sigma}$ を用いたことによる 補正のせいで標準正規分布へのなりかけとなった分布。



はらっきのリース:なにかえ、かもばらつく・サンプルサイズラ このため、標準で規分布もりばらっいた的でし、決まる、 ① 形状 t分布の形状は、サンプルサイズで決まる。

※対応のない二群のt検定では $t(n_0 + n_1 - 2)$ を用いる。 るかばらっかなくなっていくので、

ばらっきの源は女だけに限られてゆくから。 t 分布は、その自由度をどんどん大きくさせていくと、 標準正規分布に近づいていく。



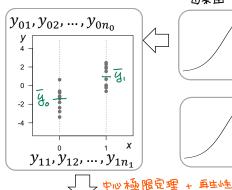
45

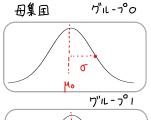
自由度 20

-3 -2 -1 0 1 2

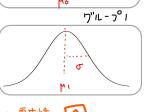
□ ノート3 検定統計量 t と仮説検定

(1) 二群の平均値差





$$N(\mu_0, \sigma^2)$$



$$N(\mu_1, \sigma^2)$$

$$\bar{y}_1 - \bar{y}_0$$

$$\int_{\mathbf{n}_0}^{\mathbf{T}} \star \frac{1}{\mathbf{n}_1} \times \frac{1}{\mathbf{n}_1} N\left(\mu_1 - \mu_0, \frac{\sigma^2}{n_0} + \frac{\sigma^2}{n_1}\right)$$

4. 5"1-2°0 0 no:かいっつののサンラルけん y。:ガループのの標本平均

P 正規分布の再生性

これは,正規分布にしたがう ひとひが存在にいるとき、 そのひとひの和/きも正規分布 になる いう性質のこと

$$V \stackrel{+}{=} U \sim N(\frac{\mu_1 + \mu_2}{2}, \sigma_0^2 + \sigma_1^2)$$

P 二群 平均值差 了、一岁。

(ステーップ1) 中心極限定理 から yo ~ N (μο, σ)

-y, ~ N(μ, σ²) (ステップ2)正規分布の再生性 から

N(0,1)

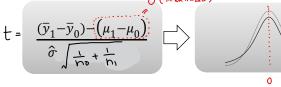
y-90~ N(η,-μο, σ(1/n0+1/n))

0(帰無仮説)

$$Z = \frac{(\bar{y}_1 - \bar{y}_0) - (\mu_1 - \mu_0)}{\sigma \sqrt{\frac{1}{n_0} + \frac{1}{n_1}}}$$

$$C = \frac{(\bar{y}_1 - \bar{y}_0) - (\mu_1 - \mu_0)}{\sigma \sqrt{\frac{1}{n_0} + \frac{1}{n_1}}}$$

$$C = \frac{(\bar{y}_1 - \bar{y}_0) - (\mu_1 - \mu_0)}{\sigma \sqrt{\frac{1}{n_0} + \frac{1}{n_1}}}$$



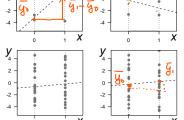
t(no+ni-2) P 標準誤差standard error

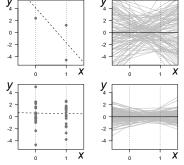
※ 標準誤差に影響を与える要素

標本分布の標準偏差を標準誤差と言い、平均値差y1-y0の従 う標本分布の標準誤差を $\sigma_{\bar{y}_1-\bar{y}_0}$ と表す。

① もともとのばらつきの推定値: $\hat{\sigma}_v$

② 点の個数:点の数が多いほど暴れ具合も小さい。





統計量であるダーダのが後う 標本分布の標準誤差 びずずを推定したもの」

友は果の大きさサンプルサイス!

P背理法

こいは、ある仮定を導入し、(2) 議論を進め、もし、その 仮定の下で、予値(整合性 がといない状況)が生じたら、 翻って、その仮定で退ける推論。 (ステップ1)動物 X = 両取額 (ステップ2) Xはエラ呼吸する (ステップ3)「動物 X = 両」は誤り、

P 梅定統計量

これは, 仮説検定に用いる 統計量のこと。二群の平均値 差の検定(七検定)ごは, たページの七値を用いる.

P 標本H布で用いた哲理法

仮説検定:t 検定

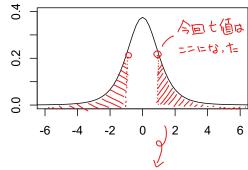
手順1 仮説の設定

※ p値

母集団に関する帰無仮説と対立仮説を設定する。

手順2 検定統計量の計算(データが決定するもの)

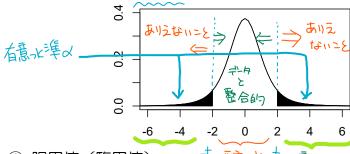
データからt値を計算し、そのp値を求める。



Ho: Mo=M1-M0=0

帰無仮説が正しい時に、今回の検定統計量の実 現値が、今以上に極端になる確率のこと。

手順3 有意水準の設定(研究者が決定するもの)



- ① 限界値(臨界値) t_c せい 愛域 せい f_c を表れることと滅多にないことを分ける基準。
- ② **棄却域と受容域** 棄却域とは、限界値より極端な値を示した領域。 棄却域ではない領域が受容域。
- ③ **有意水準α** t 値が棄却域に入る確率のこと。

手順4 仮説の選択

- ① 検定統計量の実現値が**棄却域**に入った場合 帰無仮説のもとではありえなかったことが起 きたと考え、帰無仮説を**棄**却する。
- ② 検定統計量の実現値が**受容域**に入った場合 帰無仮説と得られたデータは、整合的だったと 考え、帰無仮説は棄却しない。

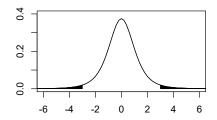
り HOMでしいことが、記明とよる 訳がはない、ひりことに注意!

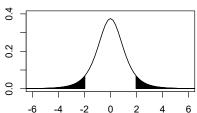
47

□ 補足:二種類の過誤

(1) 研究者が判断基準を用意するということ

データから
$$t = 2$$
だった!





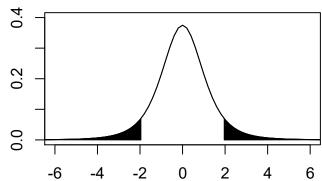
(2) 二種類の過誤

真実/判断	Н0	H1	
H0	正しい判断	第一種の過誤	
	$1-\alpha$	α	
H1	第二種の過誤 β	正しい判断 1-β	

第一種の過誤 α

「H0 が真」であるときの条件付き確率

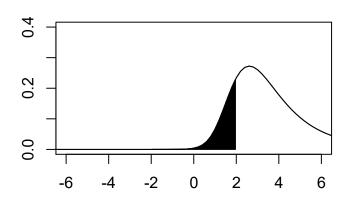
= 帰無仮説の方が正しいのに棄却してしまうリスク



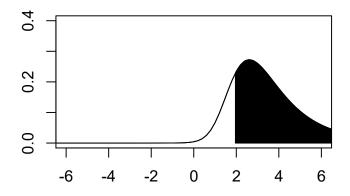
② 第二種の過誤 β

「H1 が真」であるときの条件付き確率

= H1 が正しいのに H0 を棄却できないリスク。



③ **検定力** $1-\beta$ 「H1 が真」であるときの条件付き確率 H1 の方が正しいときにちゃんと H1 を採用できる確率。



(3) 片側検定(非推奨)

何らかの理由でt値の符号が必ず正/負であることが明白なとき、一方の棄却域を消し反対側の棄却域を倍にする検定。

(1)目的

母集団の $\mu_1 - \mu_0$ に対する幅を持たせた推論をしたい。

① 検定

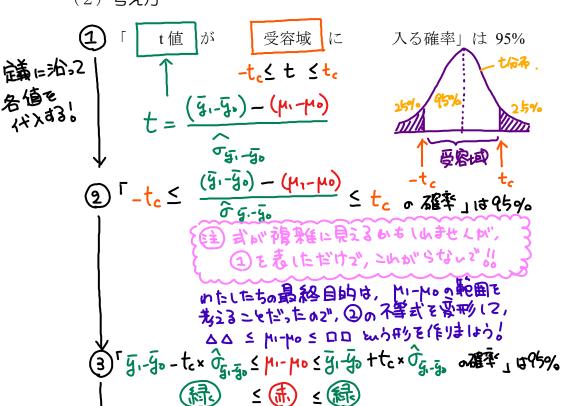
μ1-μ0=0 (H0)か" デルタと整合的 は考える. ② 医間推定

M1-40の値の集合で考える。

M1-Mo = 2 データと整合でM
M1-Mo = 1 データと整合でM
M1-Mo = 0 データと整合でM
M1-Mo = -1 データと整合でM
M1-Mo = -1 データと整合でM
M1-Mo = -2 データと整合でM

日集日の
平均価差

P t值。拡張

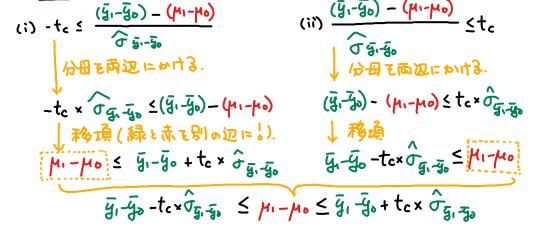


ばらつくことにあるる

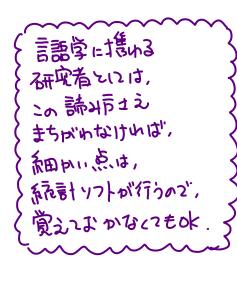
○冷徳(を説 べたしいとき

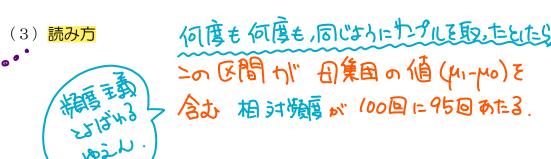
①「標本以計算と小た区間 的"母集团のパウメータの値を含むる電子」は95% 必ず標本地出のセルンでよりく、 機関主義が記書する。因定的で、

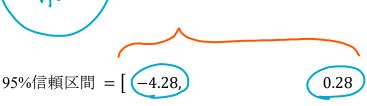
全不等式の解き方: "ミ"が2つあるのでしてはらいを解く。.

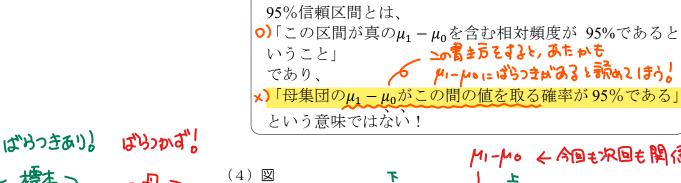


50

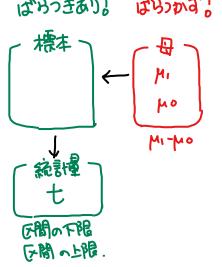


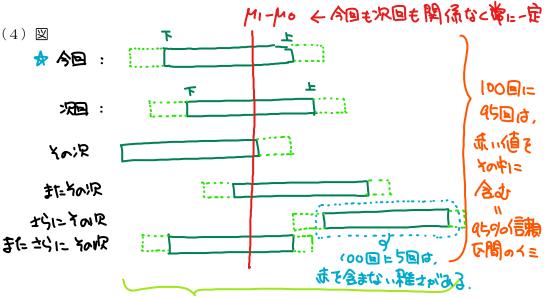






※よくある間違い





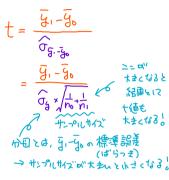
信頼区間もまた標本いま由出まれた統計量(緑)ながりならってり

(P) 検定とサンプルサイス"

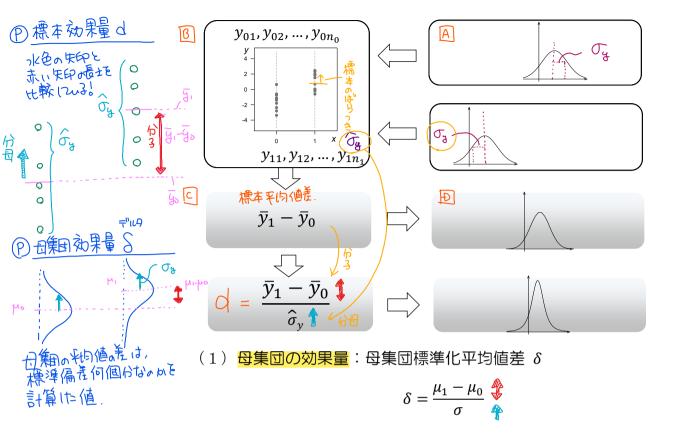
確認問題:サンプルサイズと p 値の落とし穴

英語の教授法 A と B の効果を調べるために、調査を行った。 集めた実験協力者を無作為に半分に分け、一方に教授法 A、 残り半分に教授法 B を採用した授業を受けてもらった。この 実験協力者に共通のテスト (100 点満点) を受けてもらった。 ここから教授法 A を受けた人と教授法 B を受けた人という二 つの母集団の英語成績の母集団平均値に差があるのかどうか を検証するために、対応のない t 検定を行った (両側検定)。

- (1) 実験協力者が6人のとき、次の結果を得た。
 - ① t値:0.41
- € (Tyj-go N" 4= 4= t = t > い
- ② p 值: 0.70
- ③ 95%信頼区間: CI (-17.3, 23.3)
- 間1 α 水準が 0.01% であるとき帰無仮説を棄却できるか。
- 問2 実質的に二つのグループには差があると言えるか。
- (2) 実験協力者が6,000人のとき、次の結果を得た。
 - ① t値:5.09 ② p値:0.0000003717
- でする。は内なーりはな、の2、とっていせい ダー・ダッの値がも、有意に見まてしまう。
- ③ 95%信頼区間: CI (0.79, 1.79) ⇒t しっ値 のよい判断するのは 高険
- 問 1 α 水準が 0.01% であるとき帰無仮説を棄却できるか。
- 問2 実質的に二つのグループには差があると言えるか。
- 問3 問1と問2に一見食い違いが見られるのはなぜか。



- P 七値。P値だけに注目がからず サッチルサイプによる、どのくらい 細めい養が検はざまるのか 事か、つけらからも、 対策
 - ①信賴区間码3.
 - ② 効果量で見る.
 - ③ 適切なれアルサイズを、 東馬をを行う前に判断する。



(2) 母集団効果量の点推定

母集団の標準化平均値差の**点推定値**として標本標準化 平均値差 d が用いられる。

$$\hat{\delta}$$

$$\hat{\delta} = d = \frac{\bar{y}_1 - \bar{y}_0}{\hat{\sigma}}$$

(3) 母集団効果量の区間推定

サンプルサイズが大きい時dの標本分布が正規分布となることを利用すると、 δ の 95%信頼区間は次のようになる。

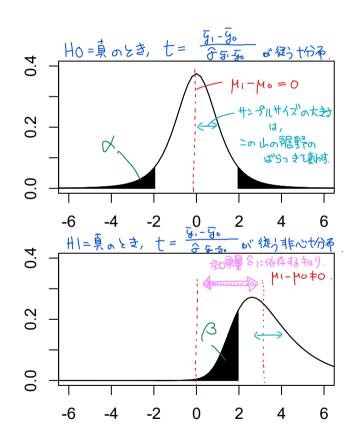
$$\hat{\delta}$$

□ 補足:効果量を用いたサンプルサイズの決定

(1) サンプルサイズの決定

次の四つは、三つが決まると残り一つが決まる関係にある。

- ①第一種の過誤の確率 (α)、H0=真ωξ⇒, H0を棄む!(t+(氧)=λ3確定).
 ②第二種の過誤の確率 (β)、H1=真ωξ⇒, H0を保持!(t+(⑥) //).
- ③想定される<mark>母集団効果量</mark> (δ) 母**和 **均様** ** **標準顧何個**心?
- 標本の大きさ、 ④サンプルサイズ (n)



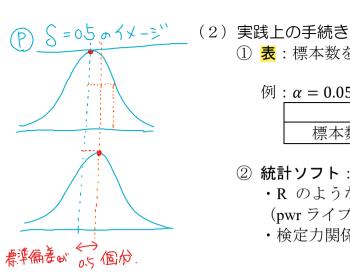


表:標本数を決める表は数多く発表されている。

例: $\alpha = 0.05$ 、検定力 $1 - \beta = 0.8$ の平均値の差の検定

			/— // ·/ ·
	$\delta = 0.2$	$\delta = 0.5$	$\delta = 0.8$
標本数	394	64	26

② 統計ソフト:

M1-Mo N 標準編 Tyo 0.5個的

- ・R のような統計ソフトでは、簡単に計算してくれる (pwr ライブラリの power.t.test)。
- ・検定力関係では、G*Power も有名。

NOTE: n is number in *each* group

